Semigroup rings and simplicial complexes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings

We show that the Eisenbud-Goto conjecture holds for seminormal simplicial affine semigroup rings. Moreover we prove an upper bound for the Castelnuovo-Mumford regularity in terms of the dimension, which is similar as in the normal case. Finally we compute explicitly the regularity of full Veronese rings.

متن کامل

Face rings of simplicial complexes with singularities

The face ring of a simplicial complex modulo m generic linear forms is shown to have finite local cohomology if and only if the link of every face of dimension m or more is nonsingular, i.e., has the homology of a wedge of spheres of the expected dimension. This is derived from an enumerative result for local cohomology of face rings modulo generic linear forms, as compared with local cohomolog...

متن کامل

On isomorphism of simplicial complexes and their related rings

In this paper, we provide a simple proof for the fact that two simplicial complexes are isomorphic if and only if their associated Stanley-Reisner rings, or their associated facet rings are isomorphic as K-algebras. As a consequence, we show that two graphs are isomorphic if and only if their associated edge rings are isomorphic as K-algebras. Based on an explicit K-algebra isomorphism of two S...

متن کامل

A combinatorial proof of the Eisenbud-Goto conjecture for monomial curves and some simplicial semigroup rings

We will give a pure combinatorial proof of the Eisenbud-Goto conjecture for arbitrary monomial curves. In addition to this, we show that the conjecture holds for certain simplicial affine semigroup rings.

متن کامل

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1997

ISSN: 0022-4049

DOI: 10.1016/s0022-4049(97)00051-0